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Abstract. In the present paper, a temperature-dependent equation of state (EOS) of condensed
matter is discussed, which is capable of predicting the high-pressure and high-temperature
behaviour of solids and liquids. The EOS can be used to obtain the volume compression, the
isothermal bulk modulus and its first pressure derivative, the thermal expansion coefficient and
the Anderson–Gr̈uneisen parameter, together with other thermodynamic properties as functions
of pressure at different temperatures. The present EOS has been applied for Au, Mo and W and
liquid Hg. Good agreement between theory and experiment is observed.

1. Introduction

The equation of state (EOS) of condensed matter (P–V –T relation) is very important in
many fields of basic and applied sciences including physics and geophysics. However,
many different forms of isothermal EOS (P–V relation) are available in the literature [1–4]
but have been found to have limited uses as far as the practical applications are concerned.
Hence, there is a need for a temperature-dependent EOS which will have a wide scope in
practical applications in physics and geophysics.

On the one hand, we find the temperature-dependent EOS given by Vinetet al [5]
and another given by Parsafar and Mason [6]. On the other hand, Kumari and Dass [4]
have suggested an EOS which is applicable to a large class of solids [7] and liquids [8].
Therefore, it will be of much interest to see the validity and the usefulness of this EOS
after adding thermal effects to make it a temperature-dependent EOS. Hence, the aim of
the present paper is to suggest a temperature-dependent EOS which is successful in the
high-pressure and high-temperature regions.

2. Theory

The EOS given by Kumari and Dass [4] can alternatively be written at a reference
temperatureTR as

V (P, TR)/V (0, TR) = [(1+ β) exp(ZP )− β]−1/η (1)

The other relations obtained during the development of the EOS are

BT (P, TR) = BT (0, TR)+ B
′
T (0, TR)

Z
[1− exp(−ZP)] (2)

and

B ′T (P, TR) = B ′T (0, TR) exp(−ZP). (3)
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In equations (1)–(3),B ′T (0, TR) is the first pressure derivative of the isothermal
bulk modulus BT (P, TR) at P = 0, Z is a pressure-independent parameter,β =
B ′T (0, TR)/[BT (0, TR)Z] and η = B ′T (0, TR)+ BT (0, TR)Z.

To include the thermal effects into the EOS, we use the simplest form

P(T ) = P(TR)+ α(0, TR)BT (0, TR)(T − TR) (4)

whereα(0, TR) is the thermal expansion coefficient. Equation (4) has been used extensively
(see, e.g., [5, 6, 9]).

Putting equation (4) into equations (1)–(3), we get

V (P, T )/V (0, TR) = [(1+ β) expσ − β]−1/η (5)

BT (P, T ) = BT (0, TR)+ B
′
T (0, TR)

Z
[1− exp(−σ)] (6)

and

B ′T (P, T ) = B ′T (0, TR) exp(−σ) (7)

whereσ is taken as

σ = Z[P − α(0, TR)BT (0, TR)(T − TR)]
under the condition thatZ is also a temperature-independent parameter.

Thus, equation (5) represents a temperature-dependent EOS of condensed matter and
will be tested in solids and liquids to determine its validity at high pressures and high
temperatures.

The following important results can be obtained from equations (5)–(7).
(i) Equation (5) can also be written as

P = 1

Z
ln

(
(V (P, T )/V (0, TR))−η + β

1+ β
)
+ α(0, TR)BT (0, TR)(T − TR). (8)

Thus, the main advantage of the present EOS given by equation (5) is that it is an
inverted EOS, i.e. we can write the volume as a function of pressure and temperature
(V = f (P, T )) given by equation (5) or the pressure as a function of volume and
temperature(P = f (V, T )) given by equation (8). Hence, the present EOS definitely
has the advantage over all those EOSs which are non-invertible but can be expressed in
many forms.

(ii) Together withV (P, T ), we can also study simultaneouslyBT (P, T ) andB ′T (P, T )
as functions of both the pressure and the temperature with the help of equations (6) and (7),
respectively.

(iii) Differentiation of equation (8) with respect to temperature at constant volume taking
Z as the temperature-independent parameter gives(

∂P

∂T

)
V

= α(P, T )BT (P, T ) = α(0, TR)BT (0, TR). (9)

Equation (9) represents the same results which have already been obtained by Kumari
and Dass [10] from quite a different approach. Many interesting results can be obtained
with the help of equation (9) and a few are listed here.

(a) Both the thermal expansion coefficientα(P, T ), and the Anderson–Grüneisen
parameterδT (P, T ) can be studied as functions of pressure at different temperatures [11].

(b) An isobaric EOS can be obtained [10].
(c) The pressure dependence of the Grüneisen parameterγ (P, T ) can be studied [12].
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Table 1. Input data(10 kbar= 1 GPa).

Pressure range Temperature range TR BT (0, TR) Z α(0, TR) RMSD at
Solids (kbar) (K) (K) (kbar) B ′T (0, TR) (×10−4 kbar−1) (×10−6 K−1) TR

Au 0.0–2161.0 300.0–3000.0 300.0 1691.52 5.04 16.09 42.78 [17] 1.54× 10−4

Mo 0.0–3000.0 293.0–7605.0 293.0 2709.02 3.58 0.84 15.00 [17] 2.67× 10−3

W 0.0–3000.0 290.0–6905.0 293.0 3138.04 3.68 0.90 13.5 [17] 4.05× 10−3

Hg 0.0–14.0 295.05–423.15 295.05 248.44 9.17 158.1 181.607 [15] 2.04× 10−5
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Table 2. Comparison of pressure (GPa) as a function of volume and temperature in Au:Pexp , experimental values taken from Heinz and Jeanolz [13];Pcalc, our calculated values.

T = 300 K T = 500 K T = 1000 K T = 1500 K T = 2000 K T = 2500 K T = 3000 K

V/V0 Pexp Pcalc Pexp Pcalc Pexp Pcalc Pexp Pcalc Pexp Pcalc Pexp Pcalc Pexp Pcalc

1.000 0.00 0.00 1.43 1.45 5.02 5.06 8.62 8.68 12.22 12.30 15.82 15.92 19.42 19.54
0.980 3.56 3.60 4.96 5.04 8.50 8.66 12.05 12.28 15.60 15.90 19.15 19.52 22.70 23.13
0.960 7.61 7.66 8.99 9.11 12.48 12.73 15.98 16.35 19.47 19.96 22.97 23.58 26.47 27.20
0.940 12.22 12.27 13.58 13.71 17.01 17.34 20.46 20.95 23.90 24.57 27.35 28.19 30.80 31.81
0.920 17.46 17.50 18.80 18.95 22.18 22.56 25.58 26.18 28.97 29.80 32.37 33.42 35.76 37.04
0.900 23.44 23.44 24.75 24.89 28.08 28.51 31.42 32.13 34.77 35.74 38.11 39.36 41.45 42.98
0.880 30.24 30.21 31.54 31.66 34.81 35.28 38.10 38.90 41.39 42.51 44.68 46.13 47.97 49.75
0.860 38.00 37.94 39.27 39.38 42.49 43.00 45.73 46.62 48.97 50.24 52.20 53.86 55.44 57.47
0.840 46.85 46.77 48.10 48.21 51.27 51.83 54.45 55.45 57.63 59.07 60.82 62.69 64.01 66.30
0.820 56.97 56.87 58.19 58.32 61.31 61.94 64.43 65.56 67.56 69.17 70.70 72.79 73.83 76.41
0.800 68.54 68.46 69.74 69.91 72.80 73.52 75.87 77.14 78.95 80.76 82.03 84.38 85.11 87.99
0.780 81.79 81.76 82.97 83.21 85.97 86.82 88.99 90.44 92.02 94.06 95.04 97.68 98.07 101.30
0.760 97.00 97.04 98.16 98.50 101.11 102.11 104.07 105.73 107.04 109.35 110.01 112.96 112.98 116.58
0.740 114.49 114.62 115.62 116.06 118.52 119.69 121.43 123.30 124.34 126.92 127.25 130.54 130.17 134.16
0.720 134.64 135.85 135.75 136.29 138.59 139.91 141.44 143.53 144.50 147.15 147.16 150.77 150.02 154.38
0.700 157.90 158.12 158.99 159.57 161.77 163.19 164.57 166.81 167.37 170.42 170.17 174.04 172.98 177.66
0.680 184.84 184.90 185.90 186.35 188.63 189.17 191.37 193.59 195.11 197.21 196.86 200.82 199.61 204.44
0.660 216.10 215.69 217.14 217.14 219.81 220.76 222.49 224.38 225.18 227.99 227.87 231.61 230.56 235.23
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Figure 1. Pressure–volume relation of Au and Hg: ——, present work;∗, experimental Hg
data, 0–13 kbar, 21.9◦C from [16]; •, experimental Hg data, 0–13 kbar, 40.5◦C, from [16];◦, experimental Hg data, 0–13 kbar, 52.9◦C, from [16];M, experimental Au data, 0–250 GPa,
500 K from [15];�, experimental Au data, 0–250 GPa, 1000 K from [15];×, experimental Au
data, 0–250 GPa, 1500 K, from [15].

Therefore, the parameterZ in the present theory is taken to be independent of both the
pressure and the temperature. This assumption works very well and it is quite evident from
the results reported later in tables 2 and 3.

(iv) The present EOS can also give the bulk modulus as a function of volume. For this
purpose, we differentiate either equation (5) with respect to pressure or equation (8) with
respect to volume at constant temperature and the result is

BT (V, T ) = η
/{

Z

[
1+ β

(
V (P, T )

V (0, TR)

)η]}
. (10)

(v) The Anderson–Gr̈uneisen parameterδT (P, T ) is defined as

δT (P, T ) = − 1

α(P, T )BT (P, T )

(
∂BT (P, T )

∂T

)
P

. (11)

Dass and Kumari [11] have obtained this parameter as

δT (P, T ) = B ′T (P, T ) (12)
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Table 3. Comparison of density as a function of pressure and temperature for Mo and W.

W Mo

ρ (g cm−3) ρ (g cm−3)
P T T

(GPa) (K) From [14] Calculated (K) From [14] Calculated

0.0 293.0 19.256 19.256 293.0 10.215 10.215
10.0 309.0 19.846 19.841 311.0 10.577 10.573
20.0 332.0 20.388 20.383 338.0 10.906 10.901
30.0 336.0 20.891 20.886 378.0 11.208 11.205
40.0 413.0 21.360 21.358 435.0 11.489 11.487
50.0 477.0 21.802 21.801 510.0 11.752 11.751
60.0 556.0 22.219 22.220 604.0 11.999 12.000
70.0 652.0 22.614 22.618 716.0 12.233 12.235
80.0 765.0 22.991 22.996 847.0 12.455 12.458
90.0 894.0 23.351 23.357 996.0 12.666 12.671

100.0 1040.0 23.695 23.702 1163.0 12.868 12.874
110.0 1202.0 24.026 24.033 1347.0 13.062 13.068
120.0 1380.0 24.345 24.352 1549.0 13.248 13.254
130.0 1573.0 24.652 24.659 1767.0 13.427 13.434
140.0 1582.0 24.948 24.956 2002.0 13.599 13.607
150.0 2006.0 25.235 25.243 2252.0 13.766 13.774
160.0 2244.0 25.513 25.521 2517.0 13.927 13.936
170.0 2496.0 25.782 25.790 2798.0 14.083 14.093
180.0 2762.0 26.044 26.052 3092.0 14.235 14.245
190.0 3042.0 26.298 26.307 3401.0 14.382 14.393
300.0 3334.0 26.546 26.555 3723.0 14.525 14.537
210.0 3639.0 26.787 26.797 4058.0 14.664 14.677
220.0 3957.0 27.022 27.032 4406.0 14.800 14.814
230.0 4286.0 27.251 27.263 4766.0 14.932 14.947
240.0 4628.0 27.475 27.488 5139.0 15.061 15.077
250.0 4980.0 27.693 27.708 5523.0 15.187 15.205
260.0 5344.0 27.907 27.924 5918.0 15.310 15.329
270.0 5719.0 28.116 28.135 6324.0 15.430 15.452
280.0 6104.0 28.320 28.342 6741.0 15.548 15.571
290.0 6499.0 28.521 28.545 7168.0 15.663 15.689
300.0 6905.0 28.717 28.744 7605.0 15.776 15.804

with the help of equation (9). On the other hand, Chang [13] has given this parameter as

δT (P, T ) = B ′T (P, T )− 1. (13)

The relation given by equation (12) is certainly better than that of equation (13) and has
already been discussed elsewhere [4]. Thus, the variation inδT (P, T ) with pressure and
temperature can be computed with the help of equation (7).

(vi) The present EOS can also be used to obtain a number of thermodynamic properties
as a function of pressure. This will be discussed elsewhere.

3. Comparison with experiment

We shall be able to compare the predictions of equations (5)–(7) with the experimental
data provided that the best fitted values ofBT (0, TR), B ′T (0, TT ) andZ become available
besides the value ofα(0, TR). The values of the first three parameters are obtained by the
least-squares fitting technique for Au, Mo, W and Hg at a reference temperatureTR. The
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Figure 2. Pressure–volume relation of Mo and W at 1000 K: ——, present work;×, W data,
from [15],•, Mo data, from [15].

values of these parameters together with other relevant data are reported in table 1. The
experimental volume data are taken from Heinz and Jeanolz [14] for Au, from Hixson and
Fritz [15] for Mo and W and from Davis and Gordon [16] for Hg.

3.1. Compression studies

By making use of equation (5) and taking the values of the relevant parameters from
table 1, the volume is computed for Mo, W and Hg as a function of pressure at different
temperatures. The pressure is calculated as a function of volume at different temperatures
for Au.

The calculated values ofP for Au are compared with the available data of Heinz and
Jeanolz in table 1 and are plotted in figure 1. The agreement is very good as the discrepancy
lies within±3.5% in the total ranges of pressures and temperatures.

The computation of density is done with the help of equation (5) for Mo and W.
The results are compared with the Hugoniot results of Hixson and Fritz in table 3. The
discrepancy is±0.2% for Mo and±0.15% for W in the total ranges of pressures and
temperatures. Thus, very good agreement is observed here.
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Table 4. Comparison of volume andBT (0, T ) as functions of pressure and temperature for
liquid Hg. The results in parentheses are taken from Davis and Gordon [15].

T = 21.09◦C T = 40.5◦C T = 52.9◦C

P V (P, T ) BT (P, T ) V (P, T ) BT (P, T ) V (P, T ) BT (P, T )

(kbar) (V = 1 at 0◦C) (kbar) (V = 1 at 0◦C) (kbar) (V = 1 at 0◦C) (kbar)

0.0 1.003 98 248.4 1.007 40 240.7 1.009 74 235.5
(1.003 98) (248.4) (1.007 36) (243.1) (1.009 62) (239.6)

1.0 1.000 00 257.5 1.003 30 249.9 1.005 55 244.8
(1.000 00) (257.6) (1.003 30) (252.4) (1.005 51) (248.9)

2.0 0.996 21 266.5 0.999 366 259.0 1.001 53 253.9
(0.996 21) (266.6) (0.999 410) (261.3) (1.001 56) (257.9)

3.0 0.992 539 275.3 0.995 581 267.9 0.997 661 262.9
(0.992 540) (275.3) (0.995 650) (270.1) (0.997 74) (266.7)

4.0 0.988 996 283.9 0.991 932 276.7 0.993 938 271.8
(0.980 00) (284.0) (0.992 030) (278.7) (0.994 060) (275.4)

5.0 0.985 571 292.5 0.988 410 285.3 0.990 347 280.6
(0.985 570) (292.5) (0.988 530) (287.3) (0.990 510) (283.9)

6.0 0.982 255 300.9 0.985 004 293.9 0.986 878 289.1
(0.982 250) (300.8) (0.985 140) (295.6) (0.997 070) (292.3)

7.0 0.979 041 309.2 0.981 706 302.3 0.983 521 297.6
(0.979 040) (309.1) (0.981 860) (303.9) (0.983 730) (300.5)

8.0 0.975 921 317.4 0.978 508 310.6 0.980 268 306.0
(0.975 900) (317.0) (0.978 600) (312.0) (0.980 510) (309.0)

9.0 0.972 889 325.4 0.975 403 318.7 0.977 113 314.2
(0.972 900) (325.0) (0.975 600) (320.0) (0.977 380) (317.0)

10.0 0.969 40 333.3 0.972 386 326.7 0.974 048 322.2
(0.969 900) (333.0) (0.972 600) (328.0) (0.974 340) (325.0)

11.0 0.967 067 341.1 0.969 450 334.6 0.971 067 330.2
(0.967 100) (341.0) (0.969 700) (336.0) (0.971 380) (333.0)

12.0 0.964 267 348.7 0.966 590 342.3 0.968 166 338.0
(0.964 300) (349.0) (0.966 800) (344.0) (0.968 510) (341.0)

13.0 0.961 536 356.3 0.963 802 349.9 0.965 338 345.7
(0.961 500) (357.0) (0.964 000) (352.0) (0.965 720) (348.0)

It is worthwhile to mention here that it is not possible to plot the data in table 3 because
both P andT are varying. However, 1− V (P, T )/V (0, TR) is plotted againstP for Mo
and W at 1000 K in figure 2 and the agreement is very good. The same is also true at other
temperatures too.

The relative volume calculations are done for liquid Hg at 21.9, 40.5 and 52.9 ◦C up to
13 kbar pressure. The calculated results are compared with the data of Davis and Gordon in
table 4 and are plotted in figure 1; they agree within±0.05% in the total ranges of pressures
and temperatures.

Thus, it can be said from the above discussion that the present EOS is quite successful
in representing the volume data as a function of pressure at different temperatures. This
gives confidence in the use of the present EOS for high pressures and high temperatures.

3.2. Bulk modulus and its first derivative

The isothermal bulk modulus and its first pressure derivative as functions of pressure at
different temperatures can be obtained from equations (6) and (7), respectively, after taking
the values of the relevant parameters from table 1.
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Figure 3. Variation in BT (P, T ) with P for Hg and with temperature for Au: ——, present
work; •, experimental Hg data, 0–13 kbar, 21.9◦C, from [16]; ×, experimental Hg data, 0–
13 kbar, 52.9◦C, from [16];•, experimental Au data,P = 0, 0–550 K, from [17].

Calculations forBT (P, T ) as a function of pressure at different temperatures are carried
out for Hg. The calculated results are compared with the data of Davis and Gordon in
table 4 and are plotted in figure 3. The agreement is very good.

For Au, equation (6) is used to compute the temperature dependence of the bulk modulus
at P = 0. The calculated results are compared with the data given by Andersonet al [17]
in table 5 and are plotted in figure 3. The agreement is fairly good. However, our results
have a small temperature dependence.

No data are available for the bulk modulus as a function of pressure for Au, Mo and
W. However, the calculations are done within the 0–400 kbar pressure range for each solid
at 300 K with the help of equation (6) after making use of the relevant parameters from
table 1. The results so obtained are plotted in figure 4. Furthermore, for completeness, we
also report the temperature dependence of the bulk modulus for Mo and W in table 5 for
ready reference.

As far as the calculations ofB ′T (P, T ) are concerned, no experimental or theoretical data
are available for the materials studied here and hence no comparison is made. However, any
one who is interested in this parameter can easily obtain the value at the desired pressure
and temperature.
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Table 5. Calculation of isothermal bulk modulus as a function of temperature for Au, Mo and W.

Au
Mo W

BT (0, T ), BT (0, T ), BT (0, T ), BT (0, T ),
T [17] calculated T calculated calculated
(K) (GPa) (GPa) (K) (GPa) (GPa)

0.0 180.32 180.07 25.0 274.80 317.98
10.0 180.32 179.71 50.0 274.43 317.59
25.0 180.13 179.17 75.0 274.07 317.20
50.0 179.33 178.26 100 273.00 316.81
75.0 178.09 177.35 150 272.98 316.09

100.0 176.73 176.44 200 272.25 315.25
125.0 175.41 175.53 300 270.80 313.69
150.0 174.07 174.62 400 269.34 312.13
175.0 172.81 173.71 500 267.89 310.57
200.0 171.53 172.80 600 266.43 309.01
225.0 170.24 171.88 700 264.97 307.45
250.0 168.99 170.98 800 263.52 305.89
275.0 167.76 170.06 900 262.06 304.33
300.0 166.51 169.15 1000 260.60 302.76
350.0 163.94 167.33 1200 257.68 299.64
400.0 161.22 165.50
450.0 158.91 163.67
500.0 156.49 161.84
550.0 153.71 160.02

Table 6. Comparison ofα(0, T ) (×10−6 K−1) as a function of temperature for Au, Mo and W;
αexp(0, T ) are the experimental values taken from [18];αcalc, our calculated values.

T Mo W Au

(K) αexp(0, T ) αcalc(0, T ) αexp(0, T ) αcalc(0, T ) αexp(0, T ) αcalc(0, T )

100 — — — — 35.7 41.01
150 12.0 13.93 10.8 12.61 39.3 41.44
200 13.8 14.29 12.3 12.90 40.8 41.88
250 14.7 14.66 13.2 13.22 42.0 42.32
293 15.0 15.00 13.5 13.50 42.6 42.72
350 15.3 15.47 13.8 13.89 44.1 43.72
400 15.6 15.92 13.8 14.26 45.6 44.71
500 15.6 16.88 13.8 15.05 47.4 45.75
600 16.2 17.98 14.1 15.95 49.2 46.83
700 16.5 19.23 14.4 16.95 51.3 47.97
800 17.1 20.67 14.4 18.10 56.4 49.17
900 18.3 22.36 14.4 19.42 63.3 50.43

3.3. Thermal expansion

The calculations ofα(0, T ) are done with the help of equation (9) for Au, Mo and W. The
results are compared with the experimental data [18] for each solid in table 6. The overall
agreement is good. However, the discrepancy increases with a rise in temperature.
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Figure 4. Variation inBT (P, T ) with P for Au, Mo and W at 300 K: ——, present work.

3.4. The Anderson–Gr¨uneisen parameter

According to [4, 11], the Anderson–Grüneisen parameter is given by

δT (P, T ) = B ′T (P, T ).
Thus, the variation inδT (P, T ) with pressure and temperature is the same as that of

B ′T (P, T ), i.e. δT (P, T ) increases with rising temperature and decreases with increasing
pressure.

4. Summary

The isothermal bulk modulus and its first pressure derivative, thermal expansion coefficient
and the Anderson–Grüneisen parameter can be computed simultaneously together with vol-
ume compression as functions of pressure at different temperatures. The overall agreement
between the calculated and the experimental value for various properties of Au, Mo, W
and Hg is good. Thus, it appears that the present temperature-dependent EOS has great
potential and scope as far as the practical applications in condensed matter are concerned.
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